Jumat, 24 Februari 2012

Diabetes Insipidus

DIABETES INSIPIDUS

DEFENISI
Diabetes insipidus adalah pengeluaran cairan dari tubuh dalam jumlah yang banyak yang disebabkan oleh dua hal :
@ Gagalnya pengeluaran vasopressin
@ Gagalnya ginjal terhadap rangsangan AVP
Diabetes insipidus adalah suatu penyakit yang jarang ditemukan, penyakit ini diakibatkan oleh berbagai penyebab yang dapat menganggu mekanisme neurohypophyseal – renal reflex sehingga mengakibatkan kegagalan tubuh dalam mengkoversi air .

GEJALA KLINIS
Keluhan dan gejala utama diabetes insipidus adalah poliuria dan polidipsia. Jumlah cairan yang diminum maupun produksi urin per 24 jam sangat banyak , dapat mencapai 5 – 10 liter sehari. Berat jenis urin biasanya sangat rendah , berkisar antara 1001 – 1005 atau 50 – 200 mOsmol/kg berat badan. Selain poliuria dan polidipsia , biasanya tidak terdapat gejala –gejala lain kecuali jika ada penyakit lain yang menyebabkan timbulnya gangguan pada mekanisme neurohypophyseal renal reflex .






PATOGENESIS
Secara patogenesis diabetes insipidus di bagi atas dua , yaitu,. diabetes insipidus sentralis dan diabetes insipidus nefrogenik.
Diabetes Insipidus Sentralis ( DIS )
DIS disebabkan oleh berapa hal diantaranya adalah :
@ pengangkutan ADH/AVP yang tidak bekerja dengan baik akibat rusaknya akson pada traktus supraoptikohipofisealis
@ sintesis ADH terganggu
@ kerusakan pada nucleus supraoptik paraventricular
@ Gagalnya pengeluaran Vasopresin
Patofisiologi
Vasopresin arginin merupakan suatu hormon antidiuretik yang dibuat di nucleus supraoptik, paraventrikular , dan filiformis hipotalamus, bersama dengan pengikatnya yaitu neurofisin II. Vasopresin kemudian diangkut dari badan-badan sel neuron tempat pembuatannya, melalui akson menuju ke ujung-ujung saraf yang berada di kelenjar hipofisis posterior, yang merupakan tempat penyimpanannya. Secara fisiologis, vasopressin dan neurofisin yang tidak aktif akan disekresikan bila ada rangsang tertentu. Sekresi vasopresin diatur oleh rangsang yang meningkat pada reseptor volume dan osmotic. Suatu peningkatan osmolalitas cairan ekstraseluler atau penurunan volume intravaskuler akan merangsang sekresi vasopresin. Vasopressin kemudian meningkatkan permeabilitas epitel duktus pengumpul ginjal terhadap air melalui suatu mekanisme yang melibatkan pengaktifan adenolisin dan peningkatan AMP siklik. Akibatnya, konsentrasi kemih meningkat dan osmolalitas serum menurun. Osmolalitas serum biasanya dipertahankan konstan dengan batas yang sempit antara 290 dan 296 mOsm/kg H2O.
Gangguan dari fisiologi vasopressin ini dapat menyebabkan pengumpulan air pada duktus pengumpul ginjal karena berkurang permeabilitasnya, yang akan menyebabkan poliuria atau banyak kencing.
Selain itu, peningkatan osmolalitas plasma kan merangsang pusat haus, dan sebaliknya penurunan osmolalitas plasma akan menekan pusat haus. Ambang rangsang osmotic pusat haus lebih tinggi dibandingkan ambang rangsang sekresi vasopresin. Sehingga apabila osmolalitas plasma meningkat, maka tubuh terlebih dahulu akan mengatasinya dengan mensekresi vasopresin yang apabila masih meningkat akan merangsang pusat haus, yang akan berimplikasi orang tersebut minum banyak (polidipsia).
Secara patogenesis, diabetes insipidus dibagi menjadi 2 yaitu diabetes insipidus sentral, dimana gangguannya pada vasopresin itu sendiri dan diabetes insipidus nefrogenik, dimana gangguannya adalah karena tidak responsifnya tubulus ginjal terhadap vasopresin.
Diabetes insipidus sentral dapat disebabkan oleh kegagalan pelepasan hormone antidiuretik ADH yang merupakan kegagalan sintesis atau penyimpanan. Hal ini bisa disebabkan oleh kerusakan nucleus supraoptik, paraventrikular, dan filiformis hipotalamus yang mensistesis ADH. Selain itu, DIS juga timbul karena gangguan pengangkutan ADH akibat kerusakan pada akson traktus supraoptikohipofisealis dan aksin hipofisis posterior di mana ADH disimpan untuk sewaktu-waktu dilepaskan ke dalam sirkulasi jika dibutuhkan.
DIS dapat juga terjadi karena tidak adanya sintesis ADH, atau sintesis ADH yang kuantitatif tidak mencukupi kebutuhan, atau kuantitatif cukup tetapi tidak berfungsi normal. Terakhir, ditemukan bahwa DIS dapat juga terjadi karena terbentuknya antibody terhadap ADH.


Etiologi
Ada beberapa keadaan yang mengakibatkan diabetes insipidus sentral , termasuk di dalamnya adalah tumor-tumor pada hipotalamus, tumor-tumor besar hipofisis dan menghancurkan nucleus-nukleus hipotalamik, trauma kepala, cedera operasi pada hipotalamus, oklusi pembuluh darah pada intraserebral, dan penyakit-penyakit granuomatosa.
Gejala klinik
Keluhan dan gejala utama diabetes insipidus adalah poliuria dan polidipsia. Jumlah produksi urin maupun cairan yang diminum per 24 jam sangat banyak. Selain poliuria dan polidipsia, biasanya tidak terdapat gejala-gejala lain, kecuali bahaya baru yang timbul akibat dehidrasi yang dan peningkatan konsentrasi zat-zat terlarut yang timbul akibat gangguan rangsang haus.
Diabetes Nefrogenik ( DI )
DIN adalah diabetes insipidus yang tidak responsive terhadap ADH eksogen
ETIOLOGI
Diabetes Insipidus Nefrogenik dapat disebabkan oleh beberapa hal yaitu
1.Penyakit ginjal kronik
Penyakit ginjal polikistik
Medullary cystic disease
Pielonefretis
Obstruksi ureteral
Gagal ginjal lanjut
2.Gangguan elektrolit
Hipokalemia
Hiperkalsemia

3 Obat -obatan
litium
demoksiklin
asetoheksamid
tolazamid
glikurid
propoksifen
4 penyaki8t sickle cell
5 gangguan diet


Diagnosis
Ada sebuah cara untuk mendiagnosa penyebab suatu poliuria adalah akibat Diabetes Insipidus, bukan karena penyakit lain. Caranya adalah dengan menjawab tiga pertanyaan yang dapat kita ketahui dengan anamnesa dan pemeriksaan.
Pertama, apakah yang menyebabkan poliuria tersebut adalah pemasukan bahan tersebut (dalam hal ini air) yang berlebihan ke ginjal atau pengeluaran yang berlebihan. Bila pada anamnesa ditemukan bahwa pasien memang minum banyak, maka wajar apabila poliuria itu terjadi.
Kedua, apakah penyebab poliuria ini adalah factor renal atau bukan. Poliuria bisa terjadi pada penyakit gagal ginjal akut pada periode diuresis ketika penyembuhan. Namun, apabila poliuria ini terjadi karena penyakit gagal ginjal akut, maka akan ada riwayat oligouria (sedikit kencing).
Ketiga, Apakah bahan utama yang membentuk urin pada poliuria tersebut adalah air tanpa atau dengan zat-zat yang terlarut. Pada umumnya, poliuria akibat Diabetes Insipidus mengeluarkan air murni, namun tidak menutup kemungkinan ditemukan adanya zat-zat terlarut. Apabila ditemukan zat-zat terlarut berupa kadar glukosa yang tinggi (abnormal) maka dapat dicurigai bahwa poliuria tersebut akibat DM yang merupakan salah satu Differential Diagnosis dari Diabetes Insipidus.
Pemeriksaan Penunjang
Jika kita mencurigai penyebab poliuria ini adalah Diabetes Insipidua, maka harus melakukan pemeriksaan untuk menunjang diagnosis dan untuk membedakan apakah jenis Diabetes Insipidus yang dialami, karena penatalaksanaan dari dua jenis diabetes insipidus ini berbeda. Ada beberapa pemeriksaan pada Diabetes Insipidus, antara lain:
1.Hickey Hare atau Carter-Robbins
2.Fluid deprivation
3.Uji nikotin
Apapun pemeriksaannya, prinsipnya adalah untuk mengetahui volume, berat jenis, atau konsentrasi urin. Sedangkan untuk mengetahui jenisnya, dapat dengan memberikan vasopresin sintetis, pada Diabetes Insipidus Sentral akan terjadi penurunan jumlah urin, dan pada Diabetes Insipidus Nefrogenik tidak terjadi apa-apa.
Penatalaksanaan
Pengobatan pada Diabetes Insipidus harus sesuai dengan gejala yang ditimbulkannya. Pada pasien DIS parsial mekanisme haus yang tanpa gejala nokturia dan poliuria yang mengganggu tidur dan aktivitas sehari-hari tidak diperlukan terapi khusus.
Pada DIS yang komplit, biasanya diperlukan terapi hormone pengganti (hormonal replacement) DDAVP (1-desamino-8-d-arginine vasopressin) yang merupakan pilihan utama. Selain itu, bisa juga digunakan terapi adjuvant yang mengatur keseimbangan air, seperti:
Diuretik Tiazid
Klorpropamid
Klofibrat
Karbamazepin

Minggu, 12 Februari 2012

Mekanisme Fiksasi Karbon Reaksi Gelap

Tumbuhan C3
Tanaman C3 lebih adaptif pada kondisi kandungan CO2 atmosfer tinggi. Sebagian besar tanaman pertanian, seperti gandum, kentang, kedelai, kacang-kacangan, dan kapas merupakan tanaman dari kelompok C3.
Pada tanaman C3, enzim yang menyatukan CO2 dengan RuBP (RuBP merupakan substrat untuk pembentukan karbohidrat dalam proses fotosintesis) dalam proses awal assimilasi, juga dapat mengikat O2 pada saat yang bersamaan untuk proses fotorespirasi ( fotorespirasi adalah respirasi,proses pembongkaran karbohidrat untuk menghasilkan energi dan hasil samping, yang terjadi pada siang hari) . Jika konsentrasi CO2 di atmosfir ditingkatkan, hasil dari kompetisi antara CO2 dan O2 akan lebih menguntungkan CO2, sehingga fotorespirasi terhambat dan assimilasi akan bertambah besar.
Tumbuhan C3 tumbuh dengan karbon fiksasi C3 biasanya tumbuh dengan baik di area dimana intensitas sinar matahari cenderung sedang, temperature sedang dan dengan konsentrasi CO2 sekitar 200 ppm atau lebih tinggi, dan juga dengan air tanah yang berlimpah. Tumbuhan C3 harus berada dalam area dengan konsentrasi gas karbondioksida yang tinggi sebab Rubisco sering menyertakan molekul oksigen ke dalam Rubp sebagai pengganti molekul karbondioksida. Konsentrasi gas karbondioksida yang tinggi menurunkan kesempatan Rubisco untuk menyertakan molekul oksigen. Karena bila ada molekul oksigen maka Rubp akan terpecah menjadi molekul 3-karbon yang tinggal dalam siklus Calvin, dan 2 molekul glikolat akan dioksidasi dengan adanya oksigen, menjadi karbondioksida yang akan menghabiskan energi.
Pada tumbuhan C3,CO2 hanya difiksasi RuBP oleh karboksilase RuBP. Karboksilase RuBP hanya bekerja apabila CO2 jumlahnya berlimpah
Contoh tanaman C3 antara lain : kedelai, kacang tanah, kentang, dll.


Siklus Calvin
Siklus Calvin disebut juga Reaksi gelap yang merupakan reaksi lanjutan dari reaksi terang dalam fotosintesis. Reaksi gelap adalah reaksi pembentukan gula dari CO2 yang terjadi di stroma. Reaksi ini tidak membutuhkan cahaya. Reaksi terjadi pada bagian kloroplas yang disebut stroma.
Tempat terjadinya Reaksi gelap
Bahan reaksi gelap adalah ATP dan NADPH, yang dihasilkan dari reaksi terang, dan CO2, yang berasal dari udara bebas. Dari reaksi gelap ini, dihasilkan glukosa (C6H12O6), yang sangat diperlukan bagi reaksi katabolisme. Reaksi ini ditemukan oleh Melvin Calvin dan Andrew Benson, karena itu reaksi gelap disebut juga reaksi Calvin-Benson.
Secara umum, reaksi gelap dapat dibagi menjadi tiga tahapan (fase), yaitu fiksasi, reduksi, dan regenerasi. Reaksi gelap dimulai dengan pengikatan atau fiksasi 6 molekul CO2 ke 6 molekuk gula 5 karbon yaitu ribulosa 1,5 bifosfat, dikatalisis oleh enzim ribulosa bifosfat karboksilase/oksigenase(rubisco) yang kemudian membentuk 6 molekul gula 6 karbon. Molekul 6 karbon ini tidak stabil maka pecah menjadi 12 molekul 3 karbon yaitu 3 fosfogliserat. 3 fosfogliserat kemudian difosforilasi oleh 12 ATP membentuk 1,3 bifosfogliserat. 1,3 bifosfogliserat difosforilasi lagi oleh 12 NADPH membentuk 12 molekul gliseradehida 3 fosfat/PGAL. 2 PGAL digunakan untuk membentuk 1 molekul glukosa atau jenis gula lainnya, sedangkan 10 molekul lainnya difosforilasi oleh 6 ATP untuk kembali membentuk 6 molekul Ribulosa 1,5 bifosfat. Proses pengikatan CO2 ke RuBP disebut fiksasi, proses pemecahan molekul 6 karbon menjadi molekul 3 karbon disebut reduksi dan proses pembentukan kembali RuBP dari PGAL disebut regenerasi.
Fotosintesis ini disebut mekanisme C3, karena molekul yang pertama kali terbentuk setelah fiksasi karbon adalah molekul berkarbon 3, 3-fosfogliserat. Kebanyakan tumbuhan yang menggunakan fotosintesis C3 disebut tumbuhan C3.
Padi, gandum, dan kedelai merupakan contoh-contoh tumbuhan C3 yang penting dalam pertanian.
Kondisi lingkungan yang mendorong fotorespirasi ialah hari yang panas, kering, dan terik-kondisi yang menyebabkan stomata tertutup. Kondisi ini menyebabkan CO2 tidak bisa masuk dan O2 tidak bisa keluar sehingga terjadi fotorespirasi.


B.     Tumbuhan C4
Tumbuhan C4 dan CAM lebih adaptif di daerah panas dan kering. Pada tanaman C4, CO2 diikat oleh PEP (enzym pengikat CO2 pada tanaman C4) yang tidak dapat mengikat O2 sehingga tidak terjadi kompetisi antara CO2 dan O2. Lokasi terjadinya assosiasi awal ini adalah di sel-sel mesofil (sekelompok sel-sel yang mempunyai klorofil yang terletak di bawah sel-sel epidermis daun). CO2 yang sudah terikat oleh PEP kemudian ditransfer ke sel-sel “bundle sheath” (sekelompok sel-sel di sekitar xylem dan phloem) dimana kemudian pengikatan dengan RuBP terjadi. Karena tingginya konsentasi CO2 pada sel-sel bundle sheath ini, maka O2 tidak mendapat kesempatan untuk bereaksi dengan RuBP, sehingga fotorespirasi sangat kecil and G sangat rendah, PEP mempunyai daya ikat yang tinggi terhadap CO2, sehingga reaksi fotosintesis terhadap CO2 di bawah 100 m mol m-2 s-1 sangat tinggi. , laju assimilasi tanaman C4 hanya bertambah sedikit dengan meningkatnyaCO2. Sehingga, dengan meningkatnya CO2 di atmosfir, tanaman C3 akan lebih beruntung dari tanaman C4 dalam hal pemanfaatan CO2 yang berlebihan. Contoh tanaman C4 adalah jagung, sorgum dan tebu
Tetapi pada sintesis C4,enzim karboksilase PEP memfiksasi CO2 pada akseptor karbon lain yaitu PEP. Karboksilase PEP memiliki daya ikat yang lebih tinggi terhadap CO2 daripada karboksilase RuBP. Oleh karena itu,tingkat CO2 menjadi sangat rendah pada tumbuhan C4,jauh lebih rendah daripada konsentrasi udara normal dan CO2 masih dapat terfiksasi ke PEP oleh enzim karboksilase PEP. Sistem perangkap C4 bekerja pada konsentrasi CO2 yang jauh lebih rendah.
Tumbuhan C4 dinamakan demikian karena tumbuhan itu mendahului siklus Calvin yang menghasilkan asam berkarbon -4 sebagai hasil pertama fiksasi CO2 dan yang memfiksasi CO2 menjadi APG di sebut spesies C3, sebagian spesies C4 adalah monokotil (tebu, jagung, dll)
Reaksi dimana CO2 dikonfersi menjadi asam malat atau asam aspartat adalah melalui penggabugannya dengan fosfoeolpiruvat (PEP) untuk membentuk oksaloasetat dan Pi.
Enzim PEP-karboksilase ditemukan pada setiap sel tumbuhan yang hidup dan enzim ini yang berperan dalam memacu fiksasi CO2 pada tumbuhan C4. enzim PEP-karboksilase terkandung dalam jumlah yang banyak pada daun tumbuhan C4, pada daun tumbuhan C-3 dan pada akar, buah-buah dan sel – sel tanpa klorofil lainnya ditemukan suqatu isozim dari PEP-karboksilase.
Reaksi untuk mengkonversi oksaloasetat menjadi malat dirangsang oleh enzim malat dehidrogenase dengan kebutuhan elektronnya disediakan oleh NHDPH. Oksaleasetat harus masuk kedalam kloroplas untuk direduksi menjadi malat.
Pembentukkan aspartat dari malat terjadi didalam sitosol dan membutuhkan asam amino lain sebagai sumber gugus aminonya. Proses ini disebut transaminasi.
Pada tumbuhan C-4 terdapat pembagian tugas antara 2 jenis sel fotosintetik, yakni :
1.     sel mesofil
2.     sel-sel bundle sheath/ sel seludang-berkas pembuluh.
Sel seludang berkas pembuluh disusun menjadi kemasan yang sangat padat disekitar berkas pembuluh. Diantara seludang-berkas pembuluh dan permukaan daun terdapat sel mesofil yang tersusun agak longgar. Siklus calvin didahului oleh masuknya CO2 ke dalam senyawa organic dalam mesofil.
Langkah pertama ialah penambahan CO2 pada fosfoenolpirufat (PEP) untuk membentuk produk berkarbon empat yaitu oksaloasetat, Enzim PEP karboksilase menambahkan CO2 pada PEP. Karbondioksida difiksasi dalam sel mesofil oleh enzim PEP karboksilase. Senyawa berkarbon-empat-malat, dalam hal ini menyalurkan atom CO2 kedalam sel seludang-berkas pembuluh, melalui plasmodesmata. Dalam sel seludang –berkas pembuluh, senyawa berkarbon empat melepaskan CO2 yang diasimilasi ulang kedalam materi organic oleh robisco dan siklus Calvin.
Dengan cara ini, fotosintesis C4 meminimumkan fotorespirasi dan meningkatkan produksi gula. Adaptasi ini sangat bermanfaat dalam daerah panas dengan cahaya matahari yang banyak, dan dilingkungan seperti inilah tumbuhan C4 sering muncul dan tumbuh subur
C.    Tumbuhan CAM
Tumbuhan C4 dan CAMlebih adaptif di daerah panas dan kering. Crassulacean acid metabolism ( CAM), tanaman ini mengambil CO2 pada malam hari, dan mengunakannya untuk fotosistensis pada siang harinya. Meski tidak menguarkan oksigen dimalam hari, namun dengan memakan CO2 yang beredar, tanaman ini sudah membantu kita semua menghirup udara bersih, lebih sehat, menyejukkan dan menyegarkan bumi, tempat tinggal dan ruangan. Jadi, cocok buat taruh di ruang tidur misalnya. Sayang, hanya sekitar 5% tanaman jenis ini. Tumbuhan CAM yang dapat mudah ditemukan adalah nanas, kaktus, dan bunga lili.
Tanaman CAM , pada kelompok ini penambatan CO2 seperti pada tanaman C4, tetapi dilakukan pada malam hari dan dibentuk senyawa dengan gugus 4-C. Pada hari berikutnya ( siang hari ) pada saat stomata dalam keadaan tertutup terjadi dekarboksilase senyawa C4 tersebut dan penambatan kembali CO2 melalui kegiatan Rudp karboksilase. Jadi tanamanCAMmempunyai beberapa persamaan dengan kelompok C4 yaitu dengan adanya dua tingkat sistem penambatan CO2.
Pada C4 terdapat pemisahan ruang sedangkan pada CAM pemisahannya bersifat sementara. Termasuk golongan CAM adalah Crassulaceae, Cactaceae, Bromeliaceae, Liliaceae, Agaveceae, Ananas comosus, dan Oncidium lanceanum.
Beberapa tanaman CAM dapat beralih ke jalur C3 bila keadaan lingkungan lebih baik.
Beberapa spesies tumbuhan mempunyai sifat yang berbeda dengan kebanyakan tumbuhan lainnya, yakni Tumbuhan ini membuka stomatanya pada malam hari dan menutupnya pada siang hari. Kelompok tumbuhan ini umumnya adalah tumbuhan jenis sukulen yang tumbuh da daerah kering. Dengan menutup stomata pada siang hari membantu tumbuhan ini menghemat air, dapat mengurangi laju transpirasinya, sehingga lebih mampu beradaptasi pada daerah kering tersebut.
Selama malam hari, ketika stomata tumbuhan itu terbuka, tumbuhan ii mengambil CO2 dan memasukkannya kedalam berbagai asam organic. Cara fiksasi karbon ini disebut metabolisme asam krasulase, atau crassulacean acid metabolism (CAM).
Dinamakan demikian karena metabolisme ini pertama kali diteliti pada tumbuhan dari famili crassulaceae. Termasuk golongan CAM adalah Crassulaceae, Cactaceae, Bromeliaceae, Liliaceae, Agaveceae, Ananas comosus, dan Oncidium lanceanum.
Jalur CAM serupa dengan jalur C4 dalam hal karbon dioksida terlebih dahulu dimasukkan kedalam senyawa organic intermediet sebelum karbon dioksida ini memasuki siklus Calvin. Perbedaannya ialah bahwa pada tumbuhan C4, kedua langkah ini terjadi pada ruang yang terpisah. Langkah ini terpisahkan pada dua jenis sel. Pada tumbuhan CAM, kedua langkah dipisahkan untuk sementara. Fiksasi karbon terjadi pada malam hari, dan siklus calvin berlangsung selama siang hari.